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Abstract. A quantum mechanical picture is presented to describe the behavior of confined spinons in a
variety of S = 1/2 chains. The confinement is due to dimerization and frustration and it manifests itself
as a nonlinear potential V (x) ∝ |x|b, centered at chain ends (b ≤ 1) or produced by modulation kinks
(b > 1). The calculation extends to weak or zero frustration some previous ideas valid for spinons in
strongly frustrated spin chains. The local magnetization patterns of the confined spinons are calculated.
A (minimum) enhancement of the local moments of about 11/3 over a single S = 1/2 is found. Estimates
for excitation energies and binding lengths are obtained.

PACS. 64.70.Kb Solid-solid transitions – 75.10.Jm Quantized spin models – 75.50.Ee Antiferromagnetics

1 Introduction

Dimerized and frustrated spin chains have attracted con-
siderable interest in recent years. This is due to the re-
cent emergence of a variety of experimental quasi-one-
dimensional systems containing localized electrons that
can be described by spin chains. Among these systems
there is a sizable number which are gapful due to dimer-
ization in their low temperature phase, such as CuGeO3

[1], α′–NaV2O5 [2], (VO)2P2O7 [3], Cu(NO3)2 · 2.5H2O
[4], CuWO4 [5], and Cu2(C2H12N2)2Cl4 [6]. The first two
dimerize as a consequence of the coupling to the lattice de-
grees of freedom, whereas the other compounds are intrin-
sically dimerized, i.e. the dimerization does not depend
on temperature. The effect of doping on these substances
represents an interesting issue, in particular since it per-
tains also to defects such as missing spins, broken chains
and chains of finite length.

As a general rule, defects in low-dimensional antiferro-
magnetic spin systems which can be described by a RVB-
type ground state [7] involve S = 1/2 states in their vicin-
ity [8]. The appearance of a certain impurity spin at the
edges of spin chains can also be discussed in the frame-
work of a nonlinear σ model for general spin S [9]. We re-
strict ourselves to S = 1/2, weakly dimerized spin chains.
The basic idea there is that without the defect each spin
has a partner with which a singlet is formed. If the de-
fect removes one of the partners, the other becomes a
free S = 1/2 spin which we will henceforth call spinon
to distinguish it from the other singlet forming spins.
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We understand that this spinon comprises also some dress-
ing of the bare S = 1/2 spin, i.e. it is not localized at just
one site. Since the singlet pairing is not static in the RVB-
picture the spinon is able to move some distance away from
the defect. In a critical, gapless system it will be delocal-
ized. This delocalization, however, disappears as soon as
the couplings are modulated.

It is the purpose of this work to elucidate in which way
an explicit dimerization acts as a confining potential for
the spinon motion leading to its localization. The generic
Hamiltonian reads

H = J
∑
i

(
(1 + (−δ)i)Si · Si+1 + αSi · Si+2

)
(1)

where δ parametrizes the dimerization and α the relative
frustration by next-nearest neighbor coupling. Previous
works, e.g. [10–13], viewed dimerization already as confin-
ing potential. We understand that there is no confinement
without dimerization (δ = 0). Here we will develop a quan-
tum mechanical picture that treats the cases of small and
large frustration on equal footing. Although this picture is
not exact in all details, nevertheless it is able to reproduce
the main features of the problem on a semi-quantitative
level. The physical quantities considered here are bind-
ing energies and local magnetizations. In addition, it will
be shown that the confinement depends on the degree of
frustration and it will be sublinear in the region of low
frustration.

For the sake of concreteness, the case of a chain end
is illustrated in Figure 1. Dimerization localizes spin sin-
glets mostly at the strong bonds. If in a dimerized chain
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Fig. 1. Three possible configurations at chain ends. The thick
(thin) solid lines stand for strong (weak) bonds; the open eye-
lets stand for singlets, the arrow for an unpaired spin. (a) weak
bond at the chain end corresponds to a free spin; (b) strong
bond at the chain end corresponds to no free spin; (c) con-
figuration after two hops of the free spin from (a). Note the
misaligned first two singlets at the strong bonds.

one spin is missing its singlet partner is freed. If the miss-
ing spin had a weak bond to the left (assuming without
loss of generality horizontal chains) and a strong bond to
the right, the free spin situation corresponds to the one in
Figure 1a. The configuration in Figure 1b is then the re-
flected configuration found on the left of the missing spin.
If the missing spin had a strong bond to the left and a weak
bond to the right, the free spin situation is found to the
left of the missing spin. The configuration in Figure 1a
is then a reflected image whereas the configuration in
Figure 1b is found to the right of the missing spin. Fig-
ure 1c illustrates the situation after two hops of the free
spin away from its origin in (a). The crucial point is that
the singlets to the left of the spin in Figure 1c are no
longer at the strong bonds. This implies an energy loss
which can be viewed as an attractive potential which ties
the free spin to its origin. Besides chain ends also solitonic
modulations, such as kink defects, will be considered in
this paper. They can also be viewed as spinon traps with
confining potentials.

The article is organized in the following way. In the
next section, the short-range RVB spinon states that de-
termine the main part of the correlations will be intro-
duced. Subsequently, the forms of the kinetic and the po-
tential energies which govern the spinon dynamics will be
discussed, i.e. the Schrödinger equation of the problem
will be setup. In the fourth and the fifth sections the quan-
titative results will be discussed and compared against
computational calculations for chain ends and for kink-
modulated chains, respectively. A summary will conclude
the article.

2 States: Norm and magnetization

Let us denote by |i〉 an up-spinon at site 2i+ 1; the other
spins are all paired to nearest-neigbor singlets. In this con-
vention, the state in Figure 1a is denoted by |0〉 and the
state in Figure 1c is denoted by |2〉. These states are not

orthogonal but their overlap [7,14,15] is given by

〈i|j〉 =

(
−

1

2

)|i−j|
. (2)

This overlap arises from a Néel type sequence of up-spins
and down-spins between the two spinons. Let us consider
a state

|v〉 =
∞∑
i=0

ai(−1)i|i〉 (3)

for which we aim to obtain a continuum description. This
means that we assume that for the low energy behavior
it is sufficient to treat ai as a slowly varying function of
i. Note that we introduced the factor (−1)i to focus on
the energetically low-lying states. This can be seen most
easily for α = 1/2 [14–16]. In order to define a normalized
wave function ψ(x) let us calculate the norm of |v〉

〈v|v〉 =
∑
i,j

a∗i aj

(
1

2

)|i−j|

≈
∑
i

|ai|
2

−1 + 2
∞∑
j=0

2−j


= 3

∑
i

|ai|
2. (4)

The approximate step is valid if ai varies in fact slowly
with i. Equation (4) tells us that passing to a normal-
ized continuous wave function ψ(x) means i → x/2 and

ai →
√

2/3ψ(x). The factor 2 introduced here enables the
replacement of x by the actual site numbers at the end of
the calculation.

Now we calculate the local magnetizations ml := 〈Szl 〉.

〈v|Szl |v〉 =
(−1)l+1

2

∑
2i+ 1 ≤ l ≤ 2j + 1 or

2j + 1 ≤ l ≤ 2i+ 1

a∗i aj

(
1

2

)|i−j|
. (5)

A contribution is found only if Szl is situated between the
two spinons which equals one half of the overlap (2). For
l odd one finds

〈v|Szl |v〉 ≈ |a(l−1)/2|
2 1

2

(
−1 + 2

∞∑
n,m=0

(
1

2

)n+m
)

=
7

2
|a(l−1)/2|

2

=
7

3
|ψ(l)|2 (6)

where n and m stand for half the distance to site l on the
left and on the right. We do not take the chain end into
account, i.e. we ignore the fact that summation for small
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l is truncated on the left. For even sites l one obtains

〈v|Szl |v〉 ≈ −
1

2
|al/2|

22
1

2

∞∑
n,m=0

2−n−m

≈ −2|al/2|
2

= −
4

3
|ψ(l)|2. (7)

With the above calculation the local magnetizations have
been linked to the probability of finding the spinon at a
given site l. The sum

∑
lml equals to one half as it has

to be for a global S = 1/2 state. Note that to obtain this
result one has to sum even and odd sites separately, and
that l changes, thus, by two from site to site.

Summing the moduli
∑
l |ml| one gets immediately

(11/3)(1/2). This means that the antiferromagnetic cor-
relations induce total local moments that correspond to
the moments of 11/3 = 3.667 independent spins S = 1/2.
This enhancement factor of 11/3 illustrates why even a low
concentration of dopants may induce considerable antifer-
romagnetism in a compound [8,17,18]. Moreover, this en-
hancement is not due to criticality but it is already built-
in in the short-range RVB state. The possible coexistence
of dimerization and alternating local magnetization was
nicely demonstrated by Fukuyama et al. by analysis of the
corresponding phase hamiltonian [17]. Impurity-induced
antiferromagnetism is already extensively investigated for
spin ladders [19–24].

In the next paragraphs we will refine the calculation
of the norm and the local magnetization by considering
indeed a discrete wave function. We would like to remove
the non-orthogonality of our basis states in order to be on
safer ground for the subsequent reasoning. Moreover, cer-
tain boundary effects can be captured by this procedure.

By Gram-Schmidt orthogonalization we find the or-
thonormal basis

|w0〉 := |0〉 (8a)

|wi>0〉 := (−1)i
2
√

3
(|i〉+ |i− 1〉). (8b)

The above definitions simplify any norm calculation. The
magnetization calculation becomes a bit more tedious. For
odd l = 2j + 1 we have

〈wj+1|S
z
2j+1|wj+1〉 = −1/6 (9a)

〈wj |S
z
2j+1|wj〉 = 1/2 for j = 0 (9b)

〈wj |S
z
2j+1|wj〉 = 1/3 for j > 0 (9c)

〈wj |S
z
2j+1|wi〉 = 2−1−j+i for j > i > 0 (9d)

〈wj |S
z
2j+1|w0〉 = 2−j/

√
3 (9e)

and the analogous formulae hold for i ↔ j. All other ex-
pectation values are zero. From the relations (9) one finds

for a normalized state |v〉 =
∑∞
i=0 bi|wi〉

〈v|Sz1 |v〉 =
1

2
|b0|

2 −
1

6
|b1|

2 (10a)

〈v|Sz2j+1|v〉 =
1

3
|bj |

2 −
1

6
|bj+1|

2 +

+ Re b∗j2
−j

(
2
√

3
b0 +

j−1∑
i=1

bi2
i

)
. (10b)

Repeating the same for even l = 2j we arrive at

〈wj |S
z
2j |wj〉 = 1/3 (11a)

〈wj |S
z
2j |wi〉 = −2−1−j+i for 0 < i < j (11b)

〈wj |S
z
2j |w0〉 = −2−j/

√
3. (11c)

From equations (11) we obtain

〈v|Sz2j |v〉 =
1

3
|bj|

2 −Re b∗j2
−j

(
2
√

3
b0 +

j−1∑
i=1

bi2
i

)
. (12)

Note that for l � 0 and slowly varying bi one re-obtains,
of course, the results equations (6, 7). This concludes the
calculation of the local magnetizations.

3 Kinetic and potential energy

In this section we address the important issue of how the
simple spinons introduced in the previous paragraph move
and how they are attracted by the chain end. We will
distinguish two regimes of frustration (i) 0.5 ≥ α > αc =
0.241 [25,26] and (ii) α ≤ αc.

In regime (i) we know that the spinons have a finite
mass and that they have a quadratic minimum in their dis-
persion [14–16]. Moreover, the strongly frustrated chains
display spontaneous symmetry breaking of the transla-
tional symmetry, i.e. spontaneous dimerization occurs.
The actual value of the gap (and the dimerization), how-
ever, is very small up to α = 0.35 [27,28] (see also Fig. 3).

In regime (ii) the spinon dispersion is linear in the wave
vector k [29]. Hence we assume ω(k) = vS |k| where vS is
the spin wave velocity which is roughly given by

vS =
π

2
(1− 1.12α) (13)

according to references [29,30]. The multiplication by |k|
in reciprocal space can be visualized as the consecutive
multiplications k sgn(k). To multiply by k corresponds to
−i∂/∂x in real space, while a multiplication by sgn(k)
corresponds to the convolution with the principal value of
i/(πx). Then, |k| in reciprocal space corresponds to the
convolution

Hkinψ(x) = −i
∂

∂x
P

∫ ∞
−∞

i

π(x− y)
ψ(y)dy (14a)

= −
1

π
P

∫ ∞
−∞

i

(x− y)2
ψ(y)dy. (14b)
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The symbol P stands for the principal value which has
to be taken. If one has to discretize the singular operator
Hkin, the most reliable approach to follow is to go back a
few steps using ω(k) = vS | sin(ka)|/a in k-space and then
transform this to real space yielding

Hkinψ(ri) = −
1

π

∑
j

4aψ(rj)

4(ri − rj)2 − 1
(15)

where a is the lattice constant.
If we want to treat a chain end, a modification turns

out to be necessary. Calculating with equation (14) the
spinon wave function for an undimerized odd size chain
one finds that the spinon is strongly repelled from the
borders. This is similar to the problem of having a quan-
tum mechanical particle in a finite box where the wave
functions are sine-like with nodes at the wall positions. It
is due to the fact that the kinetic energy cannot be fully
satisfied close to a wall since hopping processes through
the wall are not possible. However, analyzing the numeri-
cal results (see for instance the uniform susceptibility χui
in Fig. 9b of Ref. [18]) one realizes that the probability
of finding the spinon at a given site is approximately con-
stant. We interprete here the uniform susceptibility χui as
calculated by Laukamp et al. [18] as a measure for the
probability to find the spinon. From this observation we
conclude that the walls not only truncate the hopping pro-
cesses but that they induce also another effect. To account
for the fact that an approximately constant spinon wave
function is the ground state wave function for the problem
without dimerization we modify equation (14) to

H ′kinψ(x) = −
1

π
P

∫ ∞
−∞

i

(x− y)2
ψ(y)dy −

ψ(x)

πx
· (16)

The effect of this modification is most easily understood
by going back to equation (14a) and exchanging the se-
quence of differentiation and convolution. A constant wave
function yields a δ-function due to the initial jump. The
resulting term is compensated by the 1/x term in equa-
tion (16). We like to stress that the modification is mo-
tivated only phenomenologically. It would be desirable to
have a more microscopic justification as well.

Equivalently, the discrete version of equation (16)
reads

H ′kinψ(ri) = −
1

π

∑
j

4aψ(rj)

4(ri − rj)2 − 1
−

2ψ(ri)

π(2ri − 1)
(17)

if the site counting starts with i = 1 at the border. Thus,
for chain ends with small frustration we will use equa-
tion (16) as kinetic energy. For bulk problems we will
use equation (14). The corresponding discrete versions are
equations (17, 15), respectively.

Thus far, we have discussed only the kinetic energy.
Considering now the potential energy we first consider
regime (i) and in particular the Majumdar-Ghosh point
α = 0.5 for which the ground state is identical to the
short-range RVB state. As noted previously, e.g. [10,11],

the confining potential is a linear one in this regime. The
potential due to the dimerization δHD with

HD =
∞∑
j=1

(−1)jS2j−1 · S2j (18)

is given by

V (2i+ 1) = δ (〈i|HD|i〉 − 〈1|HD|1〉) . (19)

By inspecting Figures 1a and 1c we find that V (2i + 1)
increases by (3/2)J if the spinon hops once, since one sin-
glet on the strong bonds is lost on the right side whereas
one singlet is inserted on the weak bonds on the left side.
Thus we have

V (2i+ 1) = δ
3

2
Ji. (20)

This allows us to propose the following Schrödinger equa-
tion for the motion of the spinon

Eψ(x) = −
J

2m

∂2

∂x2
ψ(x) +

3δJ

4
xψ(x) (21)

with the restriction x ≥ 0. The value of m can be found
from a variational investigation of a single spinon and is
found to be approximately m = (1 + 7/

√
65)−1 ≈ 0.535

[14,15]. Rescaling equation (21) by x = ξy with

ξ = (3mδ/2)−1/3 (22)

(the site spacing is set to unity) yields

Eψ̃(y) = J

(
(3δ/4)2

2m

)1/3 (
−
∂2

∂y2
ψ̃(y) + yψ̃(y)

)
. (23)

The linear differential equation (23) with the boundary

condition ψ̃(0) = 0 is solved by shifted Airy functions [31]

0 = −
∂2

∂y2
Ai(y) + yAi(y) ⇒ (24a)

−ziAi(y + zi) = −
∂2

∂y2
Ai(y + zi) + yAi(y + zi) (24b)

where the zi are the zeros of Ai(y) which define by
ei = −zi the eigenenergies of the rescaled problem. The
normalization is given by ψ̃(y) = Ai(y + zi)/|Ai′(y + zi)|.
Summarizing, using equation (22) we have obtained

Ei = −ziJ

(
(3δ/4)2

2m

)1/3

(25a)

ψ(x) =
Ai(x/ξ + zi)√
ξ|Ai′(y + zi)|

· (25b)

The form of the wave functions are given in Figure 2 where
ξ is made equal to unity.
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Fig. 2. Ground state and first excited state wave functions
ψ0(x) and ψ1(x) using a linear potential V (x) = x and a
quadratic kinetic energy Hkin = k2. The corresponding eigen
energies are e0 = −z0 = 2.338 and e1 = −z1 = 4.088.

A linear potential together with a quadratic kinetic
energy leads to energies proportional to δ2/3 if δ mea-
sures the potential strength. Such a behavior is actually
observed in the dependence of the triplet gap ∆trip(δ) on

the dimerization ∆trip(δ) −∆trip(0) ∝ δ2/3, see Figure 3
and [28]. The corresponding calculation is almost equiva-
lent to the above one since the triplet state can be viewed
as two parallel spinons bound together by the same po-
tential. Then, the coordinate x corresponds to the rela-
tive coordinate and the mass m has to be replaced by the
relative mass µ = m/2 since one has two kinetic energy
contributions, see e.g. [11,13].

In the light of the success of a simple quantum me-
chanical picture for the case of large frustration we come
back to case (ii) of subcritical frustration. Before entering
the discussion we emphasize that without a gap there is
a priori only a less good justification for a one-particle de-
scription since the length scale of the object carrying the
S = 1/2 is the same as the spatial extent of the bound
wave functions. Yet it is interesting to see that the sim-
ple model works well qualitatively and to a certain extent
even quantitatively.

For subcritical frustration, we have two important
pieces of information. The kinetic energy is linear in k, not
quadratic. But the exponent of the (triplet) gap growth
with dimerization is also 2/3 or close to it [27,28,32,
33] (∆trip ∝ δ2/3). To illustrate this point we show in
Figure 3 gap data for four different values of the frustra-
tion. Power law fits with exponents close to 2/3 describe
fairly well the gap growth in the subcritical and the super-
critical frustration regime. The appropriate fit parameters,
however, depend on the fit interval chosen. It is known

0.00 0.02 0.04 0.06 0.08 0.10
δ

0.00

0.25

0.50

0.75

∆/
J

α=0
α=0.241
α=0.35
α=0.5

Fig. 3. Triplet gap as function of the dimerization δ for various
values of the frustration α. Symbols are DMRG results; the
solid lines are simple power law fits ∆ ≈ ∆0 + ∆1δ

ν with the
parameters (α: ∆0, ∆1, ν) (0: 0, 1.57, 0.65); (0.241: 0, 2.05,
0.65); (0.35: 0.033, 2.216, 0.642); (0.5: 0.24, 2.183, 0.685). The
absolute error is 10−4J at most.

that logarithmic corrections make it in general very diffi-
cult to observe the asymptotic behavior. Our estimations
for the binding length (see below) provide additional infor-
mation on how small the dimerization and how large the
system have to be in order for the asymptotic behavior to
be reached.

Thus far, we keep the information that the confining
potential cannot be linear in the subcritical frustration
regime. Revisiting the scaling that mapped equation (21)
to the universal form equation (23) shows that the poten-
tial must grow as a square root V (x) ∝

√
x in order to

retain the exponent 2/3. This seems a very plausible con-
jecture which will be corroborated by a direct calculation
of the potential.

In order to evaluate the potential energy between
the chain end and the spinon we use ideas of Talstra
et al. [34,35]. These authors have shown that a spinon
state can be generated to 98% overlap by inserting a sin-
gle spin in a spin chain which is otherwise in its ground
state. If we take this idea over to our problem of a spinon
and a chain end we may assume that the systems between
the chain end and the spinon is in its undimerized ground
state which is the ground state of a finite piece of chain
with open boundary condition. We have to calculate the
expectation value of the dimerization operator HD (18)
in this undimerized ground state in order to obtain an
estimate for the potential. A small refinement is actually
necessary since we are only interested in the expectation
value of HD with respect to the bulk limit. So we set
V (2i + 1) = 〈H ′D〉2i where the subscript 2i refers to the
length of the finite piece of chain and

H ′D =
∞∑
j=1

(−1)j(S2j−1 · S2j − 〈S1 · S2〉bulk). (26)
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Fig. 4. Expectation value of H ′D as explained in the main
text for three values of α. The solid lines are square root fits
∝
√
L− 1.5 with the prefactors 0.505, 0.84, and 1.29 for α = 0,

0.241, and 0.35. The offset 1.5 is chosen for the improvement of
the fits. The dashed lines are power law fits ∝ (L− 1.5)β with
the exponents and prefactors 0.544, 0.431 for α = 0, 0.630,
0.545 for α = 0.241, and 0.804, 0.450 for α = 0.35. Inset:
Square of the same data for longer chains.

From this equation one sees that the reference to the bulk
limit yields only a finite offset.

Note that calculating 〈H ′D〉 with respect to the
undimerized ground state yielding a potential V (x) ∝ δ
is in the spirit of degenerate first order perturbation the-
ory. The effect of the perturbation, here dimerization, in
the subspace of the unperturbed elementary excitations
is considered. Even though these excitations are not re-
ally degenerate they are arbitrarily close in energy so that
none of them can be discarded.

The calculation of 〈H ′D〉 is a perfect task for the
DMRG approach [36,37], especially since we deal with
open boundary conditions. The results are shown in
Figure 4. We use the infinite system algorithm [37], keep-
ing 100 states in each step. The error in the energies due
to basis truncation is found to be smaller than 10−5. One
clearly observes a sublinear increase of 〈H ′D〉 with the
chain length. Without frustration (α = 0) a square root
power law fits the data perfectly if a small offset on the
x-axis is taken into account. For larger frustration larger
exponents yield better fits. The inset, however, shows that
for longer chain lengths (L > 50), the square root behavior
is recovered for α ≤ αc which can be seen from the lin-
ear behavior of the squared values. The frustration value
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)

Fig. 5. Ground state and first excited state wave functions
ψ0(x) and ψ1(x) using a square root potential V (x) =

√
x

and linear kinetic energy Hkin = |k| plus border corrections
(see Eq. (16)). The corresponding energies are e0 = 1.049
and e1 = 2.040.

α = 0.35 is included to show that for this value relatively
close to the critical one a linear behavior 〈H ′D〉 ∝ L cannot
yet be seen.

Another evidence that for α < αc the expectation
value 〈H ′D〉 rises proportional to

√
L stems from the di-

mension 1/2 of the dimerization operator [32]. By integra-

tion
∫ L

dx/
√
x ∝

√
L follows the conjectured behaviour.

So our conjecture of a square root confining potential
for lower frustrations is corroborated by direct calcula-
tions. We are now in the position to perform an analy-
sis as in equations (21–25). Starting from the generalized
Schrödinger equation with the border effect corrected ki-
netic part H ′kin (Eq. (16))

Eψ = vSHkin[ψ] + δA
√
xψ (27)

we rescale by x = ξy with

ξ =
( vS
δA

)2/3

(28)

where vS is the spin wave velocity and A some constant
which can be deduced from fits to data as in Figure 4.
Equation (27) becomes

eiψi = H ′kin[ψi] +
√
yψi (29)

from which the energies are found using

Ei = ei(δ
2A2vS)1/3. (30)

The resulting two first wave functions are shown in
Figure 5. The dimensionless energies are e0 = 1.049
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Fig. 6. Local magnetizations at dimerized chain ends with
weak bonds for various values of α and δ. Sztot is set to 1/2.
Squares: odd sites; circles: even sites; filled symbol: DMRG;
open symbols: discrete bound spinon calculation; dashed lines
continuous bound spinon calculation.

and e1 = 2.040. Equation (29) is solved numerically by
equidistant discretization and fast Fourier transform with
up to 219 points. Due to the singular behavior of equation
(29) the precision is only of about 10−3. But this is suf-
ficient for the intuitive description that is being proposed
here.

Note that due to the border correction (Eq. (16))
the wave functions do not vanish at the chain end,
i.e. at x = 0. Furthermore, the wave functions decay
rapidly as x→∞, but not following an exponential form,
e.g.
[17,23], but rather a power law ψ(x) ∝ 1/x3. This is due
to the highly non-local character of the kinetic energy
(Eq. (14)). Thereby, we do not want to claim that the de-
cay for large x follows indeed a power law. The picture we
are presenting does not contain the generation of further
spinon-antispinon pairs since it is a quantum mechanical,
single particle scenario. It is the pair creation possible
for energies larger than the gap ∆trip which eventually
leads to the exponential decay of the spinon probability.
Our picture works best at intermediate distances as we

will show in comparison to the DMRG data in the next
section.

4 Results: Chain ends

Now we are in the position to compare results of bound
spinon calculations directly against numerical results. The
latter are obtained using the DMRG technique [36,37] for
open boundary conditions with between m = 24 to 32
states kept in the iterations. The results are shown in Fig-
ure 6. Quantum mechanical bound spinon calculations are
carried out in two ways. One is the continuum one relying
on equations (6, 7, 16), the input for the spin wave velocity
equation (13) and the potential parameters for a square
root potential (see caption of Fig. 4). This means that
one takes the result for |ψ(x)|2 in Figure 5 and rescales
|ψ(x)|2 → |ψ(x/ξ)|2/ξ with ξ from equation (28). The rel-
evant values are ξ = 16.1, 23.5, and 15.6 for the uppermost
to the lowermost panel in Figure 6. The results are shown
as dashed curves.

The other one is a discrete treatment relying on equa-
tions (10, 12, 17). The results are depicted with open sym-
bols. The values of the potential are those read off Figure 4
with V (2i + 1) = 〈H ′D(L = 2i)〉. For simplicity the very
good power law fits (dashed lines in Fig. 4) are used for
the numerics.

The agreement between the DMRG results and the
bound spinon model is very good, especially in view of
the simplicity of the model. The shape of the curves are
very well described by the bound spinon results. In par-
ticular, the correct binding length is predicted. This is
in particular interesting since we know that the quantum
mechanical model does not display an exponential decay.
This means that the exponential tail matters only at larger
lengths. For intermediate lengths, where the main weight
is found, the bound spinon calculations work very well.
The main feature that is included by the disrete calcula-
tion is the decrease of the amplitude for the first four to
five sites. It results from the properties of equations (10,
12) and can thus be attributed to border effects which
were neglected in equations (6, 7) but properly taken into
account in equations (10, 12). It is not due to the dy-
namics of the problem. The very good agreement of the
open-symbol curves and the long-dashed curves for larger
distances underlines the applicability of the approxima-
tion (4).

The overall amplitude is larger than the one predicted
by the bound spinon model. Since the basis we used in-
cluded only the shortest range singlets it is not surprising
that the true antiferromagnetic correlations are in fact
larger. Thus we view the bound spinon results in this re-
spect as a lower bound for the antiferromagnetic correla-
tions. But it is interesting that even for the amplitudes the
agreement is reasonable for correlation lengths ξ around
15. For larger values of ξ (middle panel in Fig. 6) the
agreement becomes not as good.

Another point that can be addressed easily within
the bound spinon model are excitation energies, namely
the energy difference E1 − E0 (30) between the ground
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state ψ0 and the first excitetd state ψ1, see Figure 5. The
continuum (discrete) calculation yields 0.97 (0.10), 0.048
(0.055), and 0.061 (0.073) for the three cases in Figure 6
in descending order. It is not surprising that the contin-
uum calculation provides lower values since it assumes
a potential with smaller exponent, see Fig. 4), so that
the distances between the energy levels become smaller.
A smaller exponent implies that the potential increase
for smaller arguments is larger than for larger arguments.
Thus the smaller of two consecutive eigenenergies is lifted
with respect to the larger one since the wave function be-
longing to the smaller eigenenergy is more localized. This
effect explains also why the deviation is the largest for
α = 0.35 where the deviation of the optimum fit exponent
to 1/2 is largest.

It was mentioned before that the occurrence of the
triplet gap in dimerized systems can be viewed also as a
binding phenomenon, see e.g. [11,13]. In this case, two
spinons bind. However, since only the relative coordinate
matters, this problem is almost equivalent to the bind-
ing of a single spinon to a chain end. The main difference
is that the kinetic energy is doubled since both interac-
tion partners move. So it is understandable that the ratio
(E1 −E0)/∆trip is fairly constant. The triplet gaps ∆trip

as read off Figure 3 are 0.225, 0.116, and 0.162. The ra-
tios of the continuum (discrete) values are 0.43 (0.46),0.42
(0.47), and 0.37 (0.45). Similar to the result found previ-
ously (0.6) [13] the transition from the ground state to
the first excited one is at about half the triplet gap. This
implies that it should be observable in scattering exper-
iments as a rather sharp feature within the gap. Indeed,
Raman scattering results have revealed such a feature in
Zn-doped CuGeO3 [13] even though the energy is higher
than the one-dimensional model predicts.

It is clear that at energies E0 +∆trip pair production
becomes possible as it is known in QCD. The gedanken
experiment of separating quarks in space in spite of the
confinement results in the production of new quark pairs.
In our situation any excited bound state can decay by pro-
ducing a pair of spinons at low values of momentum if its
energy fulfills Ei ≥ E0 +∆trip. This mechanism gives rise
to a continuum which sets in at E0 + ∆trip. Thus higher
energy bound states are no longer true eigenstates of the
problem but have a finite lifetime since they might de-
cay. The discrete calculation actually shows that E4 and
higher are no longer stable. This means that besides E1,
also E2 and E3 should exist as distinct sharp modes. Ex-
perimentally there is so far no indication for these higher
modes. But it should be borne in mind that any deviation
from pure d = 1 behavior tends to decrease the binding
energies. Bound states are shifted closer to the continuum
or even disappear in the continuum due to higher dimen-
sional effects, see also [13,38].

In Figure 7 we show the same results as in Figure 6
but for the Majumdar-Ghosh point α = 0.5. They are
based on equations (21, 6, 7) in the continuum case. In the
discrete case we used equations (20, 10, 12). The discrete
kinetic energy used is nearest neighbor hopping such that
the quadratic minimum is the same as for equation (21).

0 10 20
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0.20

0.30
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Fig. 7. Same as Figure 6 but for α = 0.5 and δ = 0.012.

One should expect an improved agreement since the
kind of basis we are working with is particularly suited
for the Majumdar-Ghosh point [15,16]. The agreement,
however, is not very good. It becomes decisively better if
the bound spinon results are shifted by about three lat-
tice spacing. Probably dynamic border effects not taken
into consideration by the basic assumptions concerning
the kinetic and the potential energy (focused on the low
energy behavior) are important. The binding length ξ for
the Majumdar-Ghosh model according to equation (22) is
only 4.7. Thus a low-energy approach might be insufficient
for such a small binding length.

Interestingly, Eggert and Affleck found in a compari-
son of continuum field theoretical results with numerical
data at δ = 0 also that the agreement is much better if
the continuum results are shifted by two sites towards the
chain end [39]. An understanding of either of these obser-
vations would help to understand the other.

5 Results: Kink defects

Spin-Peierls systems are characterized by a coupling of
magnetic (quasi) one-dimensional spin degrees of freedom
to the lattice degrees of freedom, i.e. vibrating distor-
tions (for reviews see [40,41]). At low temperature and
zero magnetic field the system is in the gapped dimer-
ized (D) phase where the coupling strength Ji of the spin
chain alternates from site to site. As the magnetic field is
increased the gap becomes smaller and at a critical field
Hc the phase changes to an incommensurably modulated
(I) phase. This I phase can be viewed as a soliton lattice
where equally spaced tanh-like zeros of the distortions δi
occur. In the vicinity of each zero of the distortion a spinon
S = 1/2 is localized, see [42] and references therein.

In Figure 8 the soliton lattice is illustrated. These
results are found from an adiabatic calculation where
the distortions are treated statically. Most of the in-
vestigations of the I phase assume static distortions.
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Fig. 8. Two solitons in a hundred site chain, i.e. m = 1/100,
with periodic boundary conditions are studied (parameters
α = 0.35, K = 8.7J). In the upper panel, results from the self-
consistent determined distortions δi (circles) which minimize
〈H〉 in (31) are shown. They are depicted between the sites
since they belong to bonds. The straight lines are fits to the
linear rising distortions with slope s = 0.0045. The lower panel
displays the resulting local magnetizations (circles, DMRG cal-
culation) and the bound spinon result (solid lines). For details
see main text.

The Hamiltonian H from which Figure 8 is computed by
minimization of the ground state energy with respect to
{δi} reads [42]

H = Hchain +HZeeman +Eelast (31a)

Hchain =
L∑
i=1

(JiSi · Si+1 + JαSi · Si+2) (31b)

HZeeman = −gµBHSz, (31c)

Eelast =
K

2

∑
i

δ2
i , (31d)

Ji = J(1 + δi), (31e)

where α denotes the relative frustration and Sz is the z
component of the total spin of the L-site chain. The last
two terms in equation (31) are the Zeeman energy and the
elastic energy associated to the lattice distortion. A site
independent spring constant K is used.

There are regions around site, e.g., 50 where the dis-
tortion alternates as in the D phase. The corresponding
local magnetization is essentially zero. Close to the lin-
ear zeros of the distortions at about sites 25 and 75 one
observes a strongly alternating local magnetization which
adds up to 1/2:

∑50
i=0〈S

z
i 〉 = 1/2. The distribution of local

magnetizations is observable by NMR [43] and gives inter-
esting information on the I phase and on the validity of
the adiabatic treatment [44]. An interesting observation is
that the ratio between the parallel magnetizations to the

antiparallel magnetization at (roughly) the same sites is
7:4 as implied by equations (6, 7).

In this paper we are not interested in the self-consistent
minimization of (31) but we take the {δi} as given and use
the quantum mechanical picture developed above to show
that the localized alternating magnetization in the vicin-
ity of a zero of the distortion results from a bound spinon.
The zero of the distortion is viewed as a kink defect. Since
the δi on the odd (even) bonds change sign at the zero
there is no simple short-range singlet pattern which en-
sures singlets at the stronger bonds without any free spin.
Insofar the situation is comparable to the one at chain
ends with weak bonds at the ends. The spinon bound to
a kink defect is even simpler than the spinon bound to
a chain end since no particular boundary effects on the
kinetic energy need to be taken into account. Thus we use
the continuum description based on equations (6, 7, 14).

The derivation of the attractive potential requires an
additional assumption in order to treat also site dependent
distortions. We find it natural to assume that the chain
end potential V (x) as determined from Figure 4 results
from expectation values 〈Si ·Si+1〉 − 〈Si ·Si+1〉bulk which
decay like a power law with increasing distance from the
ends

V (x) = δaxb

=
ab

2

∫ x

0

(δyb−1 + δ(x− y)b−1)dy, (32)

where we took into account that the chain end and the
position of spinon constitute borders. The effect of these
borders is treated approximatively as additive, i.e. as in-
dependent. A general power law with exponent b and
prefactor a is dealt with. The advantage of equation (32) is
that the distortion can be made site dependent δ → δ(x).
In the vicinity of the kink defect, δ(x) = sx is a good
description where s is an appropriately determined slope,
see upper panel in Figure 8. A short calculation then leads
to

V (x)kink =
abs

2

∫ |x|
0

(yyb−1 + y(|x| − y)b−1)dy

=
as

2
|x|b+1. (33)

Thus we obtain again a power law confining potential, the
exponent of which is increased by one compared with the
site-independent distortion. Moreover, the potential does
not depend on whether the spinon moves to the right or
to the left of the zero.

In Figure 9 a generic result for the localized state at a
kink defect is shown. All parameters are set to unity. But
rescaling permits, as before, to obtain the general relations

ξ =

(
2vS
as

)1/(2+b)

(34a)

Ei = ei

(
v1+b
S

as

2

)1/(2+b)

. (34b)

The solid lines in the lower panel in Figure 8 depict the
convincingly good agreement between the bound spinon
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Fig. 9. Ground state and first excited state wave functions
ψ0(x) and ψ1(x) using the integrated square root potential
V (x) = |x|3/2 and the linear kinetic energy Hkin = |k|
(see Eq. (14)). The corresponding energies are e0 = 1.051
and e1 = 2.310.

picture and the DMRG calculation. The value s = 0.0045
and the parameters of the dashed line fit to the α = 0.35
data in Figure 4 is used for the binding length ξ in (34a).

6 Summary

In this work we have developed a quantum mechanical
picture in the spirit of first order degenerate perturbation
theory which describes the confinement of spinons due to
dimerization. Without dimerization there is no confine-
ment independently of the value of the frustration α. The
picture works below and above the critical frustration of
the undimerized chain αc = 0.241, even though the justi-
fication below αc is less good. The main ingredients of the
calculation are the known facts concerning the kinetic en-
ergy of the spinons which is linear below αc and quadratic
(plus a mass term) above αc. From the dimer expectation
values close to the borders of finite chains we deduced a
potential V (x) which is proportional to the dimerization
δ. It was shown that this potential can be nicely fitted
for intermediate distances (L ≈ 50) by sublinear power
laws below and just above αc = 0.241. For larger dis-
tances (L → ∞) our results indicate that V (x) increases
like a square root for α ≤ αc and linearly for α > αc. To
our knowledge, the fact that the confining potential be-
low αc = 0.241 has to be sublinear has not been reported
before in the literature.

The quantum mechanical picture describes very well
the local magnetizations close to chain ends with weak
bonds for intermediate ξ (≈ 20). A very good agreement is

......

Fig. 10. Sketch of the singlet distribution on a doped ladder
with strong bonds (thick solid lines) on the rungs. The open
eyelets represent singlets. The circle indicates the defect (non-
magnetic dopant), the arrow the generated spinon after three
hops. The misaligned diagonal singlets generate the confining
potential.

also found for the spinon bound to a kink defect. The sum
of the moduli of the local magnetizations is (at least) en-
hanced by a factor 11/3 over the value for a single spin. For
low ξ values the continuum description becomes less reli-
able. For large values of ξ the form of the site dependence
of the local magnetization is still captured by our quantum
mechanical picture. In particular, binding lengths can be
easily estimated using equations (22, 28, 34a). The overall
amplitude of the staggered component, however, is in fact
larger for δ → 0 at T = 0 [39] .

Besides local magnetizations the eigenenergies of the
bound states can be estimated easily within our approach.
We find that in truly one-dimensional systems transitions
to the first three excited states at chain ends should be
possible. Any degree of higher dimensionality, however,
will reduce this number.

The formation of gapful triplets can equally be viewed
as binding of two spinons [11]. The essential differences to
the case of chain ends are that the site variable denotes
the relative coordinate between the spinons and that the
kinetic energy is doubled since both interaction partners
move.

The quantum mechanical picture is scale invariant.
This means that for power law potentials the wave func-
tions and energies can all be scaled to one universal case,
see Figures 2, 5, and 9. Thus the quantum mechanical de-
scription provides a pedestrian approach to perturbations
with anomalous dimensions and exponents. The anoma-
lous exponents result naturally from the scaling behavior
of the potential and the kinetic energy under changes of
the length scale. A dimensional analysis implies already
that for V (r) = arb and Hkin = c|k|d the characteristic
lengths scale like ξ ∝ (c/a)1/(b+d) and the characteristic
excitation energies like E ∝ (adcb)1/(b+d).

We like to point out that the basis states of our ap-
proach can be refined to take longer range antiferromag-
netic correlations better into account. To this end longer
range singlet pairs must be included and superposed. Dis-
persions and potentials can then be found by concepts sim-
ilar to those proposed by Sutherland [45] for short range
singlets in d = 2.

As an outlook to higher dimensions we present in
Figure 10 the leading sketch of the singlet distribution
on a ladder with strong bonds on the rungs. Ladders are
objects of ample investigations. The alternating magneti-
zations [17,19,23] and enhanced antiferromagnetic corre-
lations [21,22] indicate the similarity to open chains.
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In Figure 10 the situation is depicted of the spinon
(arrow) generated by the insertion of the defect (circle)
after three hops on the upper leg. One clearly sees that
the motion of such a spinon is also confined by a monotonic
increasing potential. An increasing distance of the spinon
from its original rung induces an increasing number of
misplaced singlets. This leads to an increase in energy.
From Figure 10 it is clear that the basic concepts of spinon
motion and confining potential can be extended also to
other RVB-type spin systems. The results discussed in this
paper are not restricted to chains only.
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